ISRAEL JOURNAL OF MATHEMATICS 166 (2008), 113–124 DOI: 10.1007/s11856-008-1022-1

LAGRANGIAN SPHERES IN THE 2-DIMENSIONAL COMPLEX SPACE FORMS

BY

Haizhong Li[∗] , Hui Ma∗∗ and Linlin Su

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China e-mail: hli@math.tsinghua.edu.cn, hma@math.tsinghua.edu.cn, suxxx056@umn.edu

ABSTRACT

By constructing a holomorphic cubic form for Lagrangian surfaces with nonzero constant length mean curvature vector in a 2-dimensional complex space form $\tilde{M}(4c)$, we characterize the Lagrangian pesudosphere as the only branched Lagrangian immersion of a sphere in $\tilde{M}(4c)$ with nonzero constant length mean curvature vector. When $c = 0$, our result reduces to Castro–Urbano's result in [1].

1. Introduction

An immersion $\phi : M \to N$ from an *n*-dimensional submanifold M to a 2ndimensional symplectic manifold (N, ω) is said to be **Lagrangian** if $\phi^* \omega = 0$, where ω is the symplectic form of N. When (N, ω) carries a Kähler structure, i.e., it possesses an integrable almost complex structure J such that the linear form

$$
g(X,Y) := \omega(X,JY),
$$

defines a Riemannian metric, the Lagrangian condition is equivalent to

 $J(\phi_*TM)\bot \phi_*TM$.

Received May 11, 2006

[∗] H. Li is partially supported by NSFC grant No. 10531090

^{∗∗} H. Ma is partially supported by NSFC grant No. 10501028 and SRF for ROCS, SEM

A known result by Dazord says that if H denotes the mean curvature vector field of a Lagrangian immersion ϕ to an Einstein–Kähler manifold, then the tangent vector field $J\mathbf{H}$ is a closed vector field on M [7]. This means that its dual 1-form $\alpha = \mathbf{H} \lrcorner \omega$, called the Maslov form of ϕ , is a closed form. Therefore, if M is a compact manifold and $H^1(M,\mathbb{R})=0$, there exists a smooth function f on M such that $df = \alpha$. Consequently, α , and so H, vanish on at least two points. In particular, there are no Lagrangian (regular) immersions of two-spheres into an Einstein–K¨ahler manifold with mean curvature vector of non-null constant length.

In [1], Castro and Urbano studied branched Lagrangian immersions from two-spheres into \mathbb{C}^2 . In fact, they obtained the following interesting result.

THEOREM 1.1 ([1]): Let $\phi : M \to \mathbb{C}^2$ be a branched Lagrangian immersion of a sphere M. If the mean curvature vector **H** of ϕ has constant length, then $\phi(M)$ is congruent, up to dilatation, to the Lagrangian pseudosphere.

It is natural to investigate the same problem in the case of non-flat complex space forms. The main results of this paper are in the following.

THEOREM 1.2: Let $\phi : M \to \mathbb{CP}^2(4)$ be a branched Lagrangian immersion of a two sphere M . If the mean curvature vector H has nonzero constant length, then $\phi(M)$ is congruent, up to isometries, to the Lagrangian pseudosphere $\phi_1: M \to \mathbb{CP}^2(4)$, which is given by Example 1.

Remark 1: If ϕ is a minimal Lagrangian immersion from a two sphere in \mathbb{CP}^2 , then by Yau's theorem in [9] we know that ϕ must be totally geodesic.

THEOREM 1.3: Let $\phi : M \to \mathbb{CH}^2(-4)$ be a branched Lagrangian immersion of a two sphere M . If the mean curvature vector H has constant length, then $\phi(M)$ is congruent, up to isometries, to the Lagrangian pseudosphere $\phi_2: M \to \mathbb{CH}^2(-4)$, which is given by Example 2.

Combined with Castro and Urbano's result, our theorems can be interpreted in the spirit of the classical Hopf's theorem, characterizing the totally umbilical $(II - HI = 0)$ sphere as the only genus zero oriented surface with constant mean curvature in a 3-dimensional space form [6].

It is proved in [5] that there exist no totally umbilical Lagrangian submanifolds in a complex form $\tilde{M}^n(4c)$ with $n \geq 2$ except the totally geodesic ones. In view of this fact, Chen introduced the concept of **Lagrangian H-umbilical** submanifolds as the "simplest" Lagrangian submanifolds next to the totally geodesic ones in complex space forms [3]. Instead of totally umbilical submanifolds, our Hopf-type theorems characterize the Lagrangian H-umbilical spheres $(\lambda = 2\mu)$ as the only genus zero oriented surface with constant length mean curvature vector in 2-dimensional complex space forms.

2. Preliminaries

2.1. Lagrangian submanifolds and Legendrian submanifolds. If $\phi: M \to \mathbb{CP}^n$ (resp., \mathbb{CH}^n) is a Lagrangian immersion of a simply connected manifold M, then ϕ has a horizontal lift with respect to the Hopf fibration to \mathbb{S}^{2n+1} (resp., \mathbb{H}^{2n+1}_1), which is unique up to isometries. We will denote this horizontal lift by $\tilde{\phi}$. Horizontal immersions from an *n*-dimensional manifold in \mathbb{S}^{2n+1} (resp., \mathbb{H}_1^{2n+1}) are called Lengendrian immersions. It is known that Lagrangian immersions in \mathbb{CP}^n (resp., \mathbb{CH}^n) are locally projections of Legendrian immersions in \mathbb{S}^{2n+1} (resp., \mathbb{H}^{2n+1}_1).

2.2. LAGRANGIAN H-UMBILICAL SUBMANIFOLDS. An n -dimensional non-totally geodesic Lagrangian submanifold in a Kähler manifold is called a **Lagrangian** H-umbilical submanifold if its second fundamental form satisfies the following simple form:

(2.1)
$$
h(e_1, e_1) = \lambda Je_1, \qquad h(e_2, e_2) = \cdots = h(e_n, e_n) = \mu Je_1, h(e_1, e_j) = \mu Je_j, \qquad h(e_j, e_k) = 0, \quad j \neq k, \quad j, k = 2, \ldots, n,
$$

for suitable functions λ and μ with respect to some suitable orthonormal local frame fields e_1, \ldots, e_n . Such submanifolds can be regarded as the simplest Lagrangian submanifolds in a complex space form next to the totally geodesic ones.

Lagrangian H-umbilical submanifolds in complex Euclidean spaces satisfying (2.1) with $\lambda = 2\mu$ are determined in [2] as follows.

THEOREM 2.1 ([2]): Up to rigid motions of \mathbb{C}^n , a Lagrangian isometric immersion $\phi: M \to \mathbb{C}^n$ is a Lagrangian pseudosphere if and only if it is a Lagrangian H-umbilical immersion satisfying (2.1) with $\lambda = 2\mu$.

Lagrangian H-umbilical submanifolds satisfying (2.1) with $\lambda = 2\mu$ in non-flat complex space forms have also been completely classified in [3] (see Theorems 5.1 and 6.1 in [3]). For simplification, we only present the results for $n = 2$.

THEOREM 2.2 ([3]): Let $\phi : M \to \mathbb{CP}^2(4c)$ be a Lagrangian H-umbilical isometric immersion satisfying (2.1) with $\lambda = 2\mu$ for some nontrivial function μ . where $c > 0$, then

- (i) μ is a constant,
- (ii) M is an open portion of $\mathbb{S}^2(\delta^2)$ with $\delta^2 = \mu^2 + c$ and hence M is locally isometric to the warped product $I \times_{\frac{1}{\delta}\cos(\delta x)} \mathbb{S}^1(1)$,
- (iii) up to rigid motions of $\mathbb{CP}^2(4c)$, the immersion ϕ is the composition $\pi \circ \tilde{\phi}$, where π is the projection of Hopf fibration from $\mathbb{S}^5(c)$ onto $\mathbb{CP}^2(4c)$ and $\tilde{\phi} : \hat{M} \to \mathbb{S}^5(c) \subset \mathbb{C}^3$ is given by

$$
\tilde{\phi}(x,y) = e^{i(\mu - \delta)x} z(y) + e^{i(\mu + \delta)x} w(y),
$$

where

$$
z(y) = \frac{1}{2\delta^2} \Big(\frac{\mu(\mu + \delta)}{\sqrt{c}} + \sqrt{c} \cos y, -(\mu + \delta) + \mu \cos y, \delta \sin y \Big),
$$

$$
w(y) = \frac{1}{2\delta^2} \Big(\frac{\mu(\mu - \delta)}{\sqrt{c}} + \sqrt{c} \cos y, -(\mu - \delta) + \mu \cos y, \delta \sin y \Big),
$$

and $z: I \to \mathbb{S}^5\left(\sqrt{\frac{2\delta c}{\delta+\mu}}\right) \subset \mathbb{C}^3$ is a special Legendre curve with speed $1/(2\delta), w: I \to \mathbb{S}^5\left(\sqrt{\frac{2\delta c}{\delta - \mu}}\right)$ $\delta-\mu$ is the associated special Legendre curve of z with speed $1/(2\delta)$ and M is the covering space of M via the Hopf fibration.

THEOREM 2.3 ([3]): Let $\phi : M \to \mathbb{CH}^2(4c)$ be a Lagrangian H-umbilical isometric immersion satisfying (2.1) with $\lambda = 2\mu$ for some non-trivial function μ . where $c < 0$, then

- (i) μ is a constant,
- (ii) M is a real space form $M^2(K)$ of constant sectional curvature $K = \mu^2 + c$,
- (iii) M is locally isometric to one of the following warped products:

 $I \times_{1/\delta \cos(\delta x)} \mathbb{R}, \quad \mathbb{R} \times_1 \mathbb{R}, \quad \mathbb{R} \times_{e^{\delta x}} \mathbb{R},$

and up to rigid motions of $\mathbb{CH}^2(4c)$, ϕ is the composition $\pi \circ \tilde{\phi}$, where π is the projection from $\mathbb{H}_1^5(c)$ onto $\mathbb{CH}^2(4c)$, $\delta = \sqrt{|K|}$ and

(iii-1) when
$$
K = \mu^2 + c > 0
$$
, $\tilde{\phi}: M \to \mathbb{H}_1^5(c) \subset \mathbb{C}_1^3$ is given by
\n
$$
\tilde{\phi}(x, y) = \frac{e^{i\mu x}}{2\delta^2} \left(\left(\frac{\mu(\mu - \delta)}{\sqrt{-c}} - \sqrt{-c} \cos y \right) e^{i\delta x} + \left(\frac{\mu(\mu + \delta)}{\sqrt{-c}} - \sqrt{-c} \cos y \right) e^{-i\delta x}, \right.
$$
\n
$$
(\delta - \mu + \mu \cos y) e^{i\delta x} - (\delta + \mu - \mu \cos y) e^{-i\delta x},
$$
\n
$$
\delta \sin y (e^{i\delta x} + e^{-i\delta x}) \right),
$$
\n
$$
\delta = \sqrt{K};
$$
\n(iii-2) when $K = \mu^2 + c = 0$, $\tilde{\phi}: M \to \mathbb{H}_1^5(c) \subset \mathbb{C}_1^3$ is given by
\n
$$
\tilde{\phi}(x, y) = e^{i\sqrt{-c}x} (1/\sqrt{-c} - ix + (\sqrt{-c}/2)y^2, x + (i/2)\sqrt{-c}y^2, y);
$$
\n(iii-3) when $K = \mu^2 + c < 0$, $\tilde{\phi}: M \to \mathbb{H}_1^5(c) \subset \mathbb{C}_1^3$ is given by
\n
$$
\tilde{\phi}(x, y) = \frac{e^{i\mu x}}{2} ((1/\sqrt{-c})(e^{\delta x}(1 - (\mu/\delta)i - cy^2) + e^{-\delta x}(1 + (\mu/\delta)i)),
$$
\n
$$
e^{\delta x} ((1/\delta) + (\mu i - \delta)y^2) - (1/\delta)e^{-\delta x}, 2ye^{\delta x}),
$$
\n
$$
\delta = \sqrt{-K}.
$$

Before we give proofs of Theorem 1.2 and Theorem 1.3, we first state two examples, which appeared in Theorem 2.2 for $c = 1$ and Theorem 2.3 (iii-1) for $c = -1$.

Example 1 (Lagrangian pseudosphere $\phi_1: M \to \mathbb{CP}^2(4)$): ϕ_1 is given by the composition $\pi \circ \tilde{\phi}_1$, where π is the projection of Hopf fibration and $\tilde{\phi}_1: M \to \mathbb{S}^5(1) \subset \mathbb{C}^3$ is given by

$$
\tilde{\phi}(x,y) = e^{i(\mu - \delta)x} z(y) + e^{i(\mu + \delta)x} w(y),
$$

where

$$
z(y) = \frac{1}{2\delta^2} (\mu(\mu + \delta) + \cos y, -(\mu + \delta) + \mu \cos y, \delta \sin y),
$$

$$
w(y) = \frac{1}{2\delta^2} (\mu(\mu - \delta) + \cos y, -(\mu - \delta) + \mu \cos y, \delta \sin y),
$$

with

$$
\mu = (2/3)|\mathbf{H}|, \quad \delta = \sqrt{1 + \mu^2}.
$$

Since $\det(g_{ij}) = (1/\delta^2) \cos^2(\delta x)$, the set of singularities of ϕ is

$$
\{(x,y)\in I\times\mathbb{R}|2\delta x=(2k+1)\pi,k\in\mathbb{Z}\}.
$$

As ϕ is 2π -periodic in y, ϕ defines an immersion $\mathbb{R} \times \mathbb{S}^1$ in \mathbb{CP}^2 . We restrict ϕ to the set

$$
\{(x,y)\in I\times\mathbb{S}^1 | -\pi\leq 2\delta x\leq \pi\},\
$$

so the singular points are isolated. Moreover,

$$
\tilde{\phi}_1(-\pi/(2\delta), y) = -e^{-(ib\pi)/\delta} \tilde{\phi}_1(\pi/(2\delta), y),
$$

hence $\phi_1(-\pi/(2\delta), y) = \phi_1(\pi/(2\delta), y)$. Using ϕ_1 is π/δ -periodic in x, if in $[-\pi/(2\delta), \pi/(2\delta)] \times \mathbb{S}^1$ we identify $\{-\pi/(2\delta)\} \times \mathbb{S}^1$ and $\{\pi/(2\delta)\} \times \mathbb{S}^1$ to two different points, we obtain a branched immersion from a two sphere to $\mathbb{CP}^2(4)$. We call $\phi_1 : M \to \mathbb{CP}^2(4)$ the Lagrangian pseudosphere in \mathbb{CP}^2 .

Example 2 (Lagrangian pseudosphere $\phi_2 : M \to \mathbb{CH}^2(4)$): ϕ_2 is given by the composition $\pi \circ \tilde{\phi}_2$, where π is the projection of Hopf fibration from $\mathbb{H}_1^5(-1)$ onto $\mathbb{CH}^2(-4)$ and $\tilde{\phi}_2: M \to \mathbb{H}^5_1(-1) \subset \mathbb{C}^3_1$ is given by

$$
\tilde{\phi}(x,y) = e^{i(\mu - \delta)x} z(y) + e^{i(\mu + \delta)x} w(y),
$$

where

$$
z(y) = \frac{1}{2\delta^2} (\mu(\mu + \delta) - \cos y, -(\mu + \delta) + \mu \cos y, \delta \sin y),
$$

$$
w(y) = \frac{1}{2\delta^2} (\mu(\mu - \delta) - \cos y, -(\mu - \delta) + \mu \cos y, \delta \sin y),
$$

with

$$
\mu = (2/3)|\mathbf{H}|, \quad \delta = \sqrt{\mu^2 - 1}.
$$

By similar analysis, we obtain a branched immersion from a two sphere to $\mathbb{CH}^2(-4)$. We call $\phi_2: M \to \mathbb{CH}^2(-4)$ the Lagrangian pseudosphere in \mathbb{CH}^2 .

3. Holomorphic cubic form

We consider now that the target manifold N is a simply connected 2-dimensional complex space form with complex structure J and constant holomorphic sectional curvature 4c. We denote by $N = \tilde{M}(4c)$ the complex projective plane \mathbb{CP}^2 if $c = 1$, the complex Euclidean plane \mathbb{C}^2 if $c = 0$ and the complex hyperbolic plane \mathbb{CH}^2 if $c = -1$, with their standard complex structures J and metrics q.

Relative to the orthonormal frames

$$
e_1, e_2; e_{1^*} = Je_1, e_{2^*} = Je_2,
$$

the structure equations are

(3.1)
$$
d\theta_A = \sum_B \theta_{AB} \wedge \theta_B, \quad \theta_{AB} + \theta_{BA} = 0,
$$

$$
d\theta_{AB} = \sum_C \theta_{AC} \wedge \theta_{BC} + \Omega_{AB},
$$

where the indices have the range

$$
A, B, C, D, \ldots = 1, 2, 1^*, 2^*; \quad i, j, k, l, \ldots = 1, 2
$$

and θ_A is an orthonormal coframe, $\theta_{AB} (=-\theta_{BA})$ are the connection forms, and

$$
\Omega_{AB} = -\frac{1}{2} \sum_{C,D} K_{ABCD} \theta_C \wedge \theta_D,
$$

where

(3.2)
$$
K_{ABCD} = c\{(\delta_{AC}\delta_{BD} - \delta_{AD}\delta_{BC}) + g(Je_C, e_A)g(Je_D, e_B) - g(Je_C, e_B)g(Je_D, e_A) + 2g(Je_C, e_D)g(Je_B, e_A)\}\
$$

are the curvature forms. Equation (3.2) expresses the fact that N is of constant holomorphic curvature 4c. Denote by $\overline{\nabla}$ the connection of N with respect to g. It follows from the fact that $\overline{\nabla} \circ J = J \circ \overline{\nabla}$ that

(3.3)
$$
\theta_{ij} = \theta_{i^*j^*}, \ \theta_{i^*j} = \theta_{j^*i}.
$$

Let $\phi : M \to \tilde{M}(4c)$ be a branched Lagrangian immersion from an oriented surface M into $\tilde{M}(4c)$. Outside of the branch points, we restrict to the frame $e_1, e_2, e_{1*} = Je_1, e_{2*} = Je_2$, such that e_1, e_2 are tangent to L. Then

$$
\theta_{i^*} = 0,
$$

and by (3.1),

(3.4) $\theta_{ji^*} = h_{jk}^{i^*} \theta_k,$

where

$$
h_{jk}^{i^*} = h_{kj}^{i^*}.
$$

The first and second fundamental forms are respectively

$$
I = \theta_1^2 + \theta_2^2,
$$

\n
$$
II = \sum_{i=1}^2 (h_{11}^{i*} \theta_1^2 + 2h_{12}^{i*} \theta_1 \theta_2 + h_{22}^{i*} \theta_2^2) e_{i*}.
$$

Taking the second formula of (3.3), we have

(3.5)
$$
h_{jk}^{i*} = h_{ki}^{j*} = h_{ij}^{k*}.
$$

The mean curvature vector is defined by

$$
\mathbf{H} = \frac{1}{2} \sum_{k} H^{k^*} e_{k^*} = \frac{1}{2} \sum_{k} \left(\sum_{j} h_{jj}^{k^*} \right) e_{k^*}.
$$

Exterior differentiation of (3.4) and use of (3.1) give

$$
\sum Dh^{i^*}_{jk} \wedge \theta_k = 0,
$$

where

$$
Dh_{jk}^{i^*} = dh_{jk}^{i^*} + \sum_l h_{lk}^{i^*} \theta_{lj} + \sum_l h_{jl}^{i^*} \theta_{lk} + \sum_l h_{jk}^{l^*} \theta_{l^*i^*}.
$$

By putting

(3.6)
$$
Dh_{jk}^{i^*} = \sum h_{jk,l}^{i^*} \theta_l,
$$

we get

(3.7)
$$
h_{jk,l}^{i^*} = h_{jl,k}^{i^*}.
$$

Thus $h^{i^*}_{jk,l}$ is symmetric in any two of its indices and

(3.8)
$$
H_j^{i^*} = H_i^{j^*},
$$

where $H_i^{i^*}$ j^i is defined by

(3.9)
$$
\sum_{j} H_{j}^{i^{*}} \theta_{j} = dH^{i^{*}} + \sum_{j} H^{j^{*}} \theta_{ji}.
$$

Choose an isothermal parameter $z = x + iy$ on M, denote the induced metric of M by $g = \rho^2 dz d\bar{z}$, so $\theta_1 = \rho dx, \theta_2 = \rho dy$. Write

(3.10) ζ = θ¹ + iθ² = ρdz.

By (3.1) its exterior derivative is given by

$$
d\zeta = i\zeta \wedge \theta_{12}.
$$

Now suppose that the mean curvature vector ${\bf H}$ is nonzero everywhere. Define a cubic form on M by

$$
\Theta = 8((h(\phi_z, \phi_z), J\phi_z) + \frac{2}{3|\mathbf{H}|^2} \langle \mathbf{H}, J\phi_z \rangle^3) \otimes (dz)^3
$$

= $\hat{H}\zeta^3$,

Vol. 166, 2008 LAGRANGIAN SPHERES 121

where

(3.12)
$$
\hat{H} = (h_{11}^{1^*} - 3h_{22}^{1^*}) + i(h_{22}^{2^*} - 3h_{11}^{2^*}) + \frac{1}{12|\mathbf{H}|^2} (H^{1^*} - iH^{2^*})^3
$$

and \langle , \rangle denotes the inner product associated with the Riemannian metrics on M as well as on $\tilde{M}(4c)$.

Remark 2: It is easy to see that Θ is independent of the choice of the complex coordinates. So it is a global cubic form on M . It is a generalization of the cubic form for Lagrangian surface in \mathbb{C}^2 given by Castro and Urbano in [1].

THEOREM 3.1: If H is a nonzero constant, Θ is a holomorphic cubic form on M_{\odot}

Proof. The hypothesis implies

(3.13)
$$
H^{1^*} H_{,k}^{1^*} + H^{2^*} H_{,k}^{2^*} = 0, \quad k = 1, 2.
$$

From (3.13), (3.5), (3.6), (3.7), (3.8) and (3.9), it follows that

$$
(3.14) \quad d\hat{H} = 3\theta_{12}\left\{3h_{11}^{2^*} - h_{22}^{2^*} + \frac{1}{4|\mathbf{H}|^2}(H^{1^*})^2H^{2^*} - \frac{1}{12|\mathbf{H}|^2}(H^{2^*})^3\right\} + 3i\theta_{12}\left\{-3h_{22}^{1^*} + h_{11}^{1^*} + \frac{1}{12|\mathbf{H}|^2}(H^{1^*})^3 - \frac{1}{4|\mathbf{H}|^2}H^{1^*}(H^{2^*})^2\right\} - \zeta\left\{4h_{221}^{1^*} + ih_{111}^{2^*} - ih_{221}^{2^*} + \frac{1}{2|\mathbf{H}|^2}H^{1^*}H^{2^*}H_2^{1^*} + i\frac{1}{4|\mathbf{H}|^2}[(H^{1^*})^2 - (H^{2^*})^2]H_2^{1^*}\right\}
$$

From (3.10) and the definition of Θ , we have

$$
\Theta = \hat{H}\rho^3 (dz)^3.
$$

It suffices to show that the coefficient $\hat{H}\rho^3$ of $(dz)^3$ in this expression is a holomorphic function of z. By substituting (3.10) into (3.11) , we get

$$
d\rho + i\rho\theta_{12} \equiv 0 \mod{dz},
$$

while (3.14) implies

 $d\hat{H} - 3i\theta_{12}\hat{H} \equiv 0 \mod{dz}.$

It follows that

$$
d(\hat{H}\rho^3) \equiv 0 \mod{dz}.
$$

Therefore, for a branched Lagrangian immersion $\phi : M \to \tilde{M}(4c)$ with the nonzero constant length mean curvature vector, the cubic form Θ is holomorphic outside of the branch points. Moreover, from the expression of Θ , we know that Θ has zeros at the branch points. So Θ has no poles and it is a holomorphic 3-differential on M. Г

Remark 3: It is well-known that if $\phi : M \to \tilde{M}(4c)$ is a minimal surface in a 2-dimensional complex space form, i.e., $\mathbf{H} \equiv 0$, then

$$
\Theta = 8 \langle h(\phi_z, \phi_z), J\phi_z \rangle (dz)^3
$$

is a holomorphic 3-form on M.

PROPOSITION 3.2: Let $\phi : M \to \tilde{M}(4c)$ be a branched Lagrangian immersion from an oriented surface M into a 2-dimensional complex space form $\tilde{M}(4c)$. Then $\Theta \equiv 0$ if and only if M is a Lagrangian H-umbilical surface satisfying

$$
h(e_1, e_1) = \lambda Je_1, \quad h(e_2, e_2) = \mu Je_1, \quad h(e_1, e_2) = \mu Je_2,
$$

with $\lambda = 2\mu$ with respect to some suitable orthonormal local frame field.

Proof. It is clear that $\lambda = 2\mu$ implies $\Theta \equiv 0$. Conversely, it follows from (3.12) that $\Theta \equiv 0$ is equivalent to

$$
12|\mathbf{H}|^{2}(h_{11}^{1^{*}} - 3h_{22}^{1^{*}}) + (H^{1^{*}})^{3} - 3H^{1^{*}}(H^{2^{*}})^{2} = 0,
$$

\n
$$
12|\mathbf{H}|^{2}(h_{22}^{2^{*}} - 3h_{11}^{2^{*}}) + (H^{2^{*}})^{3} - 3(H^{1^{*}})^{2}H^{2^{*}} = 0.
$$

It can be deduced to

$$
12|\mathbf{H}|^{2}h_{11}^{1*} = 2(H^{1*})^{3} + 3H^{1*}(H^{2*})^{2},
$$

\n
$$
12|\mathbf{H}|^{2}h_{22}^{1*} = (H^{1*})^{3},
$$

\n
$$
12|\mathbf{H}|^{2}h_{11}^{2*} = (H^{2*})^{3},
$$

\n
$$
12|\mathbf{H}|^{2}h_{22}^{2*} = 3(H^{1*})^{2}H^{2*} + 2(H^{2*})^{3}.
$$

Take the local orthonormal frame e_1, e_2, e_{1*}, e_{2*} such that $e_{1*} = H/|H|$, then $H^{1^*} = 2|\mathbf{H}|$ and $H^{2^*} = 0$. It is easy to get that

$$
h(e_1, e_1) = \lambda e_1, \quad h(e_2, e_2) = \mu e_1, \quad h(e_1, e_2) = \mu e_2,
$$

H

where $\lambda = (4/3)|\mathbf{H}| = 2\mu$.

As a corollary, we have

THEOREM 3.3: Let $\phi : \mathbb{S}^2 \to \tilde{M}(4c)$ be a branched Lagrangian immersion from a two sphere to a 2-dimensional complex space form with constant length mean curvature vector. Then the surface is Lagrangian H-umbilical with $\lambda = 2\mu$.

Taking account of Theorem 2.1, we get the following corollary, which is the main result in [1].

COROLLARY 3.4: Let $\phi : M \to \mathbb{C}^2$ be a branched Lagrangian immersion from a two sphere with constant length mean curvature vector. Then M is a Lagrangian pseudosphere.

4. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. Let $\phi : M \to \mathbb{CP}^2(4)$ be a branched Lagrangian immersion from a two sphere with constant length mean curvature vector. Then it follows from Theorem 2.2 and Theorem 3.3 that up to isometries, M is the Lagrangian pseudosphere $\phi_1 : M \to \mathbb{CP}^2(4)$, which is given by Example 1. Therefore we complete the proof of Theorem 1.2.

We also need the following lemma in order to prove our Theorem 1.3.

LEMMA 4.1 ([8]): Let $\phi : \Sigma \to N \subset \mathbb{R}^k$ be a conformal smoothly branched immersion from a compact Riemann surface Σ . Then

$$
\frac{1}{2\pi} \int_{\Sigma} K dv = \chi(\Sigma) + b,
$$

where $\chi(\Sigma)$ is the Euler number of Σ and b the number of branch points of Σ . counted with multiplicities.

Proof of Theorem 1.3. Let $\phi : M \to \mathbb{CH}^2(-4)$ be a branched Lagrangian immersion from a two sphere with constant length mean curvature vector. According to the above generalized Gauss-Bonnet formula, there is no branched immersion from a topological two sphere to $\mathbb{CH}^2(-4)$ with non-positive curvature. Then it follows from Theorem 2.3 and Theorem 3.3 that up to isometries, M is the Lagrangian pseudosphere ϕ_2 : $M \to \mathbb{CH}^2(-4)$, which is given by Example 2. This completes the proof of Theorem 1.3.

References

- [1] I. Castro and F. Urbano, A Characterization on the Lagrangian pseudosphere, Proceedings American Mathematical Socciety 132 (2004), 1797–1804.
- [2] B.-Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. The Tôhoku Mathematical Journal. Second Series 49 (1997), 277–297.
- [3] B.-Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, Israel Journal of Mathematics 99 (1997), 69–108.
- [4] B.-Y. Chen, Intrinsic and extrinsic structures of Lagrangian surfaces in complex space forms, Tsukuba Journal of Mathematics 22, (1998), 657–680.
- [5] B. Y. Chen and K. Ogiue, Two theorems on Kähler manifolds, Michigan Mathematical Journal 21 (1974), 225–229.
- [6] S.S. Chern, On surfaces of constant mean curvature in a three-dimensional space of constant curvature, in Geometric Dynamics, Springer Lecture Notes 1007, 1983, pp. 104–108.
- [7] P. Dazord, Sur la géometrie des sous-fibrés et des feuilletages lagrangiens, Annales Scientifiques de l'École Normale Supèrieure. Quatrième Série. 14 (1981), 465–480.
- [8] J. Eschenburg and R. Tribuzy, Branch points of conformal mappings of surfaces, Mathematische Annalen. 279 (1988), 621–633.
- [9] S.T. Yau, Submanifolds with constant mean curvature I, American Journal of Mathematics 96 (1974), 346-366.