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ABSTRACT

By constructing a holomorphic cubic form for Lagrangian surfaces with
nonzero constant length mean curvature vector in a 2-dimensional complex
space form M (4c), we characterize the Lagrangian pesudosphere as the
only branched Lagrangian immersion of a sphere in M (4¢) with nonzero
constant length mean curvature vector. When ¢ = 0, our result reduces

to Castro—Urbano’s result in [1].

1. Introduction

An immersion ¢ : M — N from an n-dimensional submanifold M to a 2n-
dimensional symplectic manifold (N, w) is said to be Lagrangian if ¢*w = 0,
where w is the symplectic form of N. When (N,w) carries a Kéhler structure,
i.e., it possesses an integrable almost complex structure J such that the linear
form

9(X,)Y) =w(X,JY),

defines a Riemannian metric, the Lagrangian condition is equivalent to

J(¢TM) L. TM.
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A known result by Dazord says that if H denotes the mean curvature vector field
of a Lagrangian immersion ¢ to an Einstein—Ké&hler manifold, then the tangent
vector field JH is a closed vector field on M [7]. This means that its dual 1-form
a = How, called the Maslov form of ¢, is a closed form. Therefore, if M is a
compact manifold and H!(M,R) = 0, there exists a smooth function f on M
such that df = a. Consequently, «, and so H, vanish on at least two points.
In particular, there are no Lagrangian (regular) immersions of two-spheres into
an Einstein—Ké&hler manifold with mean curvature vector of non-null constant
length.

In [1], Castro and Urbano studied branched Lagrangian immersions from
two-spheres into C2. In fact, they obtained the following interesting result.

THEOREM 1.1 ([1]): Let ¢ : M — C? be a branched Lagrangian immersion of a
sphere M. If the mean curvature vector H of ¢ has constant length, then ¢(M)
is congruent, up to dilatation, to the Lagrangian pseudosphere.

It is natural to investigate the same problem in the case of non-flat complex
space forms. The main results of this paper are in the following.

THEOREM 1.2: Let ¢ : M — CP2(4) be a branched Lagrangian immersion of
a two sphere M. If the mean curvature vector H has nonzero constant length,
then ¢(M) is congruent, up to isometries, to the Lagrangian pseudosphere
¢1 : M — CP*(4), which is given by Example 1.

Remark 1: If ¢ is a minimal Lagrangian immersion from a two sphere in CP?,
then by Yau’s theorem in [9] we know that ¢ must be totally geodesic.

THEOREM 1.3: Let ¢ : M — (CHQ(—AL) be a branched Lagrangian immer-
sion of a two sphere M. If the mean curvature vector H has constant length,
then ¢(M) is congruent, up to isometries, to the Lagrangian pseudosphere
¢2 : M — CH?(—4), which is given by Example 2.

Combined with Castro and Urbano’s result, our theorems can be interpreted
in the spirit of the classical Hopf’s theorem, characterizing the totally umbilical
(II — HI = 0) sphere as the only genus zero oriented surface with constant
mean curvature in a 3-dimensional space form [6].

It is proved in [5] that there exist no totally umbilical Lagrangian subman-
ifolds in a complex form M™(4¢) with n > 2 except the totally geodesic ones.
In view of this fact, Chen introduced the concept of Lagrangian H-umbilical
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submanifolds as the “simplest” Lagrangian submanifolds next to the totally
geodesic ones in complex space forms [3]. Instead of totally umbilical submani-
folds, our Hopf-type theorems characterize the Lagrangian H-umbilical spheres
(A = 2u) as the only genus zero oriented surface with constant length mean
curvature vector in 2-dimensional complex space forms.

2. Preliminaries

2.1. LAGRANGIAN SUBMANIFOLDS AND LEGENDRIAN SUBMANIFOLDS. If
¢ : M — CP" (resp., CH") is a Lagrangian immersion of a simply connected
manifold M, then ¢ has a horizontal lift with respect to the Hopf fibration to
S2+L (resp., H?"H), which is unique up to isometries. We will denote this
horizontal lift by q} Horizontal immersions from an n-dimensional manifold in
S+ (resp., HI" ') are called Lengendrian immersions. It is known that La-
grangian immersions in CP" (resp., CH") are locally projections of Legendrian
immersions in $?**1 (resp., HZ" ™).

2.2. LAGRANGIAN H-UMBILICAL SUBMANIFOLDS. An n-dimensional non-totally
geodesic Lagrangian submanifold in a Kéhler manifold is called a Lagrangian
H-umbilical submanifold if its second fundamental form satisfies the follow-
ing simple form:

(2.1) h(e1,e1) = Neq, h(ea,ea) = -+ = h(en, en) = pJex,
h(e1,e;) = plej, hiej,ex) =0, j#k, jk=2,...,n,

for suitable functions A and p with respect to some suitable orthonormal local
frame fields ej,...,e,. Such submanifolds can be regarded as the simplest
Lagrangian submanifolds in a complex space form next to the totally geodesic
ones.

Lagrangian H-umbilical submanifolds in complex Euclidean spaces satisfying
(2.1) with A = 2 are determined in [2] as follows.

THEOREM 2.1 ([2]): Up to rigid motions of C", a Lagrangian isometric immer-
sion ¢ : M — C" is a Lagrangian pseudosphere if and only if it is a Lagrangian
H-umbilical immersion satisfying (2.1) with A\ = 2.
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Lagrangian H-umbilical submanifolds satisfying (2.1) with A = 2 in non-flat
complex space forms have also been completely classified in [3] (see Theorems
5.1 and 6.1 in [3]). For simplification, we only present the results for n = 2.

THEOREM 2.2 ([3]): Let ¢ : M — CP?*(4c) be a Lagrangian H-umbilical iso-
metric immersion satisfying (2.1) with A\ = 2u for some nontrivial function p,
where ¢ > 0, then

(i) p is a constant,
(i) M is an open portion of S?(6?) with 62 = p? + ¢ and hence M is locally
isometric to the warped product I X 1 cos(6z) St(1),
(iif) up to rigid motions of CIP?(4c), the immersion ¢ is the composition 7 o b,
where 7 is the projection of Hopf fibration from S°(c) onto CP?(4c) and
¢: M — S5(c) C C? is given by

Oz,y) = 072 (y) 4 I (y),

where
1 +9 .
z(y) = ﬁ(% + Vecosy, —(p + 6) +ucosy,6smy),
1 -4 )
w(y) = 2—62(% ++/ccosy, —(pu—9) +ucosy,5smy),

and z : I — SE’( 62_‘3;) C C3 is a special Legendre curve with speed

1/(28), w: I — S° (, / %) is the associated special Legendre curve of z
with speed 1/(26) and M is the covering space of M via the Hopf fibration.
THEOREM 2.3 ([3]): Let ¢ : M — CH?(4c) be a Lagrangian H-umbilical iso-

metric immersion satisfying (2.1) with A\ = 2u for some non-trivial function p,
where ¢ < 0, then

(i) p is a constant,
(ii) M is a real space form M?(K) of constant sectional curvature K = p?+c,
(iii) M is locally isometric to one of the following warped products:

I Xl/écos(éw) R, R X1 R, R X s ]R,

and up to rigid motions of CH2(4C), ¢ is the composition 7 o ¢, where
is the projection from H}(c) onto CH?(4c), § = /| K| and
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(iii-1) when K = p® +¢ >0, ¢ : M — H(c) € C3} is given by

oz, y) = (;Zg: <<% - \/—_ccosy)e“;”” + (% - \/—_ccosy)e’”“’,
isa

(0 — p+ pcosy)e® — (6 + p — pcosy)e %,

i0x

dsiny(e® + ei‘sx)> ,
0= \/E;
(iii-2) when K = 2 +¢=0, ¢ : M — H5(c) C C3} is given by
$x,y) = V(LN =e — iz + (V=¢/2)y% x + (i/2V =y’ y);
(iii-3) when K = 2 4+ ¢ <0, ¢ : M — H5(¢) € C3? is given by

Basy) = S (VO (0~ (18 = ) + €07 (1 4 (u/3)i),
T (1/6) + (i = 9)?) — (1/5)e~, 2ye’),
§=v-K.

Before we give proofs of Theorem 1.2 and Theorem 1.3, we first state two
examples, which appeared in Theorem 2.2 for ¢ = 1 and Theorem 2.3 (iii-1) for
c=—1.

Example 1 (Lagrangian pseudosphere ¢ : M — CP?(4)): ¢, is given by the com-
position mogy, where 7 is the projection of Hopf fibration and ¢,: M —S?(1) € C?
is given by

Oz, y) = e =0T2(y) 4 T y),

where

1 .
2(y) = 252 (u(p+90) + cosy, —(u+9) + pcosy,dsiny),
1 .
w(y) = 252 (u(p —0) 4+ cosy, —(p — d) + prcosy, Isiny),
with

p=(2/3)H|, 6=+v1+p>

Since det(g;;) = (1/6%) cos?(dx), the set of singularities of ¢ is

{(z,y) € I x R|20x = (2k + 1)m, k € Z}.
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As ¢ is 2m-periodic in y, ¢ defines an immersion R x S' in CP?. We restrict ¢
to the set
{(z,y) e I x S| =7 < 20z < 7},

so the singular points are isolated. Moreover,

(51(_7[-/(26)5 y) = _e_(ibﬂ—)/é(gl (77/(26),:(]),
hence ¢1(—7/(20),y) = ¢1(n/(26),y). Using ¢ is w/d-periodic in z, if in
[—7/(26),7/(20)] x St we identify {—m/(26)} x St and {7/(2§)} x S! to two
different points, we obtain a branched immersion from a two sphere to CP2(4).
We call ¢; : M — CP?(4) the Lagrangian pseudosphere in CP?.

Example 2 (Lagrangian pseudosphere ¢ : M — CH?(4)): ¢ is given by the
composition 7 o ¢, where 7 is the projection of Hopf fibration from H3(—1)
onto CH?(—4) and ¢ : M — H3(—1) C C3? is given by

O(z,y) = e H0%2(y) + T (y),

where
1
2(y) = 555 (lp+ 0) = cosy, =(u+ ) + pcosy, dsiny),
1 .
w(y) = 557 (i = 8) = cosy, (i = §) + pcosy, dsiny),
with

w=(2/3)H|, 5= 1.

By similar analysis, we obtain a branched immersion from a two sphere to
CH?(—4). We call ¢y : M — CH?(—4) the Lagrangian pseudosphere in CH?.

3. Holomorphic cubic form

We consider now that the target manifold N is a simply connected 2-dimensional
complex space form with complex structure J and constant holomorphic sec-
tional curvature 4c. We denote by N = M (4c¢) the complex projective plane
CP? if ¢ = 1, the complex Euclidean plane C? if ¢ = 0 and the complex hy-
perbolic plane CH? if ¢ = —1, with their standard complex structures J and
metrics g.

Relative to the orthonormal frames

e1, e2; e1= = Jeq, egx = Jeo,
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the structure equations are

(3.1) deA:ZGAB/\GB, Oa + 04 =0,
B

dOap = Z Oac NOpc + Qap,
C

where the indices have the range
A B,C,D,...=1,2,1*,2%; 4,5,k1,...=1,2
and 04 is an orthonormal coframe, §45(= —0p4) are the connection forms, and
1
Qup = —3 Z Kapcpbc NOp,
C,D
where
(3.2) Kapep =c{(0acdpp — 0apdpc) + g(Jec,ea)g(Jep, ep)
- g(JeC, eB)g(JeD7 €A) + 29(‘]607 €D)g(J€B, €A)}'

are the curvature forms. Equation (3.2) expresses the fact that NV is of constant
holomorphic curvature 4c. Denote by V the connection of N with respect to g.
It follows from the fact that Vo .J = J o V that

(33) GU = 91'*]‘*, 91*] = 9_]*1

Let ¢ : M — M (4¢) be a branched Lagrangian immersion from an oriented
surface M into M (4c¢). Outside of the branch points, we restrict to the frame
e1,e9;e1- = Jey, ear = Jeg, such that e;, es are tangent to L. Then

6;» =0,
and by (3.1),
(3.4) 0 = h'y.0r,
where

hhy, = hiy;.-
The first and second fundamental forms are respectively
2, p2
I =07+065,
2

IT =Y (W67 + 21150102 + hiyy03 )e;-.

i=1
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Taking the second formula of (3.3), we have

7% ) % ko
(3.5) o=hi =hyr.
The mean curvature vector is defined by

H= %ZHk*ek* = %Z (th;)ek*
k J

k

Exterior differentiation of (3.4) and use of (3.1) give

> Dhiy Ao =0,

where
Dhiy = dhiy + 3" higby + > b+ > b
1 1 1
By putting
(3.6) Dhiy =Y hiy 0,
we get
(3.7) h;;,l = h;;k

Thus h;k ; is symmetric in any two of its indices and
(3.8) HI =H],
where H;* is defined by
(3.9) S H0;=dH" +> H'0;.
J J
Choose an isothermal parameter z = x + iy on M, denote the induced metric
of M by g = p*dzdz, so 0, = pdx, 0y = pdy. Write
(3.10) (=01 +103 = pdz.
By (3.1) its exterior derivative is given by
(3.11) d¢ = iC N 2.

Now suppose that the mean curvature vector H is nonzero everywhere. Define
a cubic form on M by

© =8({(6,6:). 702) + 3 (L. 10.)°) © (d)°

:HCSa
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where

(3.12) H = (h}] —3hdy) +i(h2, — 3h%)) + (H" —iH?")?

12|H|?
and (,) denotes the inner product associated with the Riemannian metrics on

M as well as on M (4c).

Remark 2: 1t is easy to see that © is independent of the choice of the complex
coordinates. So it is a global cubic form on M. It is a generalization of the
cubic form for Lagrangian surface in C? given by Castro and Urbano in [1].

THEOREM 3.1: If H is a nonzero constant, © is a holomorphic cubic form on
M.

Proof. The hypothesis implies

(3.13) HYHY +H H% =0, k=12
From (3.13), (3.5), (3.6), (3.7), (3.8) and (3.9), it follows that
N x * 1 * . 1 .
14 dH =30 h? — h3, + ——=(H" )?H? — 23
(3 ) 3 12{3 11 20+ 4|H|2( ) 12|H|2( ) }

1 1\3 1 1% 172°\2
I AR T TEA '}

+ 3i010{ — 3hiy + hi1 +

- C{4h%21 + Zh%u - mgzl + WHI H? H21

1 . . .
- Hl 2 H2 2 Hl
From (3.10) and the definition of O, we have
0 = Hp3(dz)3.
It suffices to show that the coefficient Hp? of (dz)® in this expression is a
holomorphic function of z. By substituting (3.10) into (3.11), we get
dp+iphi2o =0 mod dz,
while (3.14) implies
dH — 3i612H =0 mod dz.
It follows that
d(Hp?) =0 mod dz.
Therefore, for a branched Lagrangian immersion ¢ : M — M (4c) with the
nonzero constant length mean curvature vector, the cubic form © is holomorphic
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outside of the branch points. Moreover, from the expression of ©, we know that
© has zeros at the branch points. So © has no poles and it is a holomorphic
3-differential on M. |

Remark 3: Tt is well-known that if ¢ : M — M(4c) is a minimal surface in a
2-dimensional complex space form, i.e., H = 0, then

0= 8<h(¢zv ¢z)a J¢Z>(d'z)3

is a holomorphic 3-form on M.

PROPOSITION 3.2: Let ¢ : M — M (4c) be a branched Lagrangian immersion
from an oriented surface M into a 2-dimensional complex space form M (4c).
Then © = 0 if and only if M is a Lagrangian H-umbilical surface satisfying

h(e1,e1) = AJe1, h(ea,ea) = pJer, hler,es) = pJes,
with A = 2u with respect to some suitable orthonormal local frame field.

Proof. Tt is clear that A = 2y implies © = 0. Conversely, it follows from (3.12)
that ©® = 0 is equivalent to

12[H|?(h}; — 3hdy) + (H')* = 3H (H*)* =0,
12[H[?(h3; — 3h%)) + (H* ) = 3(H')*H* =0.
It can be deduced to
12[H[2hY; = 2(HY )3 + 3HY (H? )2,
12/H[*hd,y = (H')?,
12[H?h%, = (H?)?,
12[H|h3, = 3(H")2H* +2(H*)?.

Take the local orthonormal frame ey, ez, €1+, €2+ such that e;~ = H/|H|, then
H' =2[H| and H* = 0. It is easy to get that

h(el, 61) = )\61*, h(eg, 62) = Ueq=, h(el, 62) = €=,

where A = (4/3)|H| = 2p. |

As a corollary, we have
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THEOREM 3.3: Let ¢ : S? — M(4c) be a branched Lagrangian immersion from
a two sphere to a 2-dimensional complex space form with constant length mean
curvature vector. Then the surface is Lagrangian H-umbilical with A = 2pu.

Taking account of Theorem 2.1, we get the following corollary, which is the
main result in [1].

COROLLARY 3.4: Let ¢ : M — C? be a branched Lagrangian immersion from
a two sphere with constant length mean curvature vector. Then M is a La-
grangian pseudosphere.

4. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. Let ¢ : M — CP2(4) be a branched Lagrangian immer-
sion from a two sphere with constant length mean curvature vector. Then it
follows from Theorem 2.2 and Theorem 3.3 that up to isometries, M is the
Lagrangian pseudosphere ¢; : M — CP?*(4), which is given by Example 1.
Therefore we complete the proof of Theorem 1.2. |

We also need the following lemma in order to prove our Theorem 1.3.

LeEMMA 4.1 ([8]): Let ¢ : ¥ — N C R¥ be a conformal smoothly branched

immersion from a compact Riemann surface 3. Then

1
— | Kdv=x(X)+b
27TEU><()+,

where x(X) is the Euler number of ¥ and b the number of branch points of 3,
counted with multiplicities.

Proof of Theorem 1.3. Let ¢ : M — CH?(—4) be a branched Lagrangian im-
mersion from a two sphere with constant length mean curvature vector. Ac-
cording to the above generalized Gauss-Bonnet formula, there is no branched
immersion from a topological two sphere to CH?(—4) with non-positive curva-
ture. Then it follows from Theorem 2.3 and Theorem 3.3 that up to isometries,
M is the Lagrangian pseudosphere ¢o : M — (CHQ(—AL), which is given by
Example 2. This completes the proof of Theorem 1.3. ]
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