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ABSTRACT

By constructing a holomorphic cubic form for Lagrangian surfaces with

nonzero constant length mean curvature vector in a 2-dimensional complex

space form M̃(4c), we characterize the Lagrangian pesudosphere as the

only branched Lagrangian immersion of a sphere in M̃(4c) with nonzero

constant length mean curvature vector. When c = 0, our result reduces

to Castro–Urbano’s result in [1].

1. Introduction

An immersion φ : M → N from an n-dimensional submanifold M to a 2n-

dimensional symplectic manifold (N, ω) is said to be Lagrangian if φ∗ω = 0,

where ω is the symplectic form of N . When (N, ω) carries a Kähler structure,

i.e., it possesses an integrable almost complex structure J such that the linear

form

g(X, Y ) := ω(X, JY ),

defines a Riemannian metric, the Lagrangian condition is equivalent to

J(φ∗TM)⊥φ∗TM.
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A known result by Dazord says that if H denotes the mean curvature vector field

of a Lagrangian immersion φ to an Einstein–Kähler manifold, then the tangent

vector field JH is a closed vector field on M [7]. This means that its dual 1-form

α = Hyω, called the Maslov form of φ, is a closed form. Therefore, if M is a

compact manifold and H1(M, R) = 0, there exists a smooth function f on M

such that df = α. Consequently, α, and so H, vanish on at least two points.

In particular, there are no Lagrangian (regular) immersions of two-spheres into

an Einstein–Kähler manifold with mean curvature vector of non-null constant

length.

In [1], Castro and Urbano studied branched Lagrangian immersions from

two-spheres into C2. In fact, they obtained the following interesting result.

Theorem 1.1 ([1]): Let φ : M → C2 be a branched Lagrangian immersion of a

sphere M . If the mean curvature vector H of φ has constant length, then φ(M)

is congruent, up to dilatation, to the Lagrangian pseudosphere.

It is natural to investigate the same problem in the case of non-flat complex

space forms. The main results of this paper are in the following.

Theorem 1.2: Let φ : M → CP
2(4) be a branched Lagrangian immersion of

a two sphere M . If the mean curvature vector H has nonzero constant length,

then φ(M) is congruent, up to isometries, to the Lagrangian pseudosphere

φ1 : M → CP
2(4), which is given by Example 1.

Remark 1: If φ is a minimal Lagrangian immersion from a two sphere in CP
2,

then by Yau’s theorem in [9] we know that φ must be totally geodesic.

Theorem 1.3: Let φ : M → CH
2(−4) be a branched Lagrangian immer-

sion of a two sphere M . If the mean curvature vector H has constant length,

then φ(M) is congruent, up to isometries, to the Lagrangian pseudosphere

φ2 : M → CH
2(−4), which is given by Example 2.

Combined with Castro and Urbano’s result, our theorems can be interpreted

in the spirit of the classical Hopf’s theorem, characterizing the totally umbilical

(II − HI = 0) sphere as the only genus zero oriented surface with constant

mean curvature in a 3-dimensional space form [6].

It is proved in [5] that there exist no totally umbilical Lagrangian subman-

ifolds in a complex form M̃n(4c) with n ≥ 2 except the totally geodesic ones.

In view of this fact, Chen introduced the concept of Lagrangian H-umbilical
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submanifolds as the “simplest” Lagrangian submanifolds next to the totally

geodesic ones in complex space forms [3]. Instead of totally umbilical submani-

folds, our Hopf-type theorems characterize the Lagrangian H-umbilical spheres

(λ = 2µ) as the only genus zero oriented surface with constant length mean

curvature vector in 2-dimensional complex space forms.

2. Preliminaries

2.1. Lagrangian submanifolds and Legendrian submanifolds. If

φ : M → CP
n (resp., CH

n) is a Lagrangian immersion of a simply connected

manifold M , then φ has a horizontal lift with respect to the Hopf fibration to

S2n+1 (resp., H
2n+1
1 ), which is unique up to isometries. We will denote this

horizontal lift by φ̃. Horizontal immersions from an n-dimensional manifold in

S2n+1 (resp., H
2n+1
1 ) are called Lengendrian immersions. It is known that La-

grangian immersions in CP
n (resp., CH

n) are locally projections of Legendrian

immersions in S2n+1 (resp., H
2n+1
1 ).

2.2. Lagrangian H-umbilical submanifolds. An n-dimensional non-totally

geodesic Lagrangian submanifold in a Kähler manifold is called a Lagrangian

H-umbilical submanifold if its second fundamental form satisfies the follow-

ing simple form:

h(e1, e1) = λJe1, h(e2, e2) = · · · = h(en, en) = µJe1,(2.1)

h(e1, ej) = µJej , h(ej , ek) = 0, j 6= k, j, k = 2, . . . , n,

for suitable functions λ and µ with respect to some suitable orthonormal local

frame fields e1, . . . , en. Such submanifolds can be regarded as the simplest

Lagrangian submanifolds in a complex space form next to the totally geodesic

ones.

Lagrangian H-umbilical submanifolds in complex Euclidean spaces satisfying

(2.1) with λ = 2µ are determined in [2] as follows.

Theorem 2.1 ([2]): Up to rigid motions of Cn, a Lagrangian isometric immer-

sion φ : M → Cn is a Lagrangian pseudosphere if and only if it is a Lagrangian

H-umbilical immersion satisfying (2.1) with λ = 2µ.
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Lagrangian H-umbilical submanifolds satisfying (2.1) with λ = 2µ in non-flat

complex space forms have also been completely classified in [3] (see Theorems

5.1 and 6.1 in [3]). For simplification, we only present the results for n = 2.

Theorem 2.2 ([3]): Let φ : M → CP
2(4c) be a Lagrangian H-umbilical iso-

metric immersion satisfying (2.1) with λ = 2µ for some nontrivial function µ,

where c > 0, then

(i) µ is a constant,

(ii) M is an open portion of S2(δ2) with δ2 = µ2 + c and hence M is locally

isometric to the warped product I × 1

δ
cos(δx) S1(1),

(iii) up to rigid motions of CP
2(4c), the immersion φ is the composition π ◦ φ̃,

where π is the projection of Hopf fibration from S5(c) onto CP
2(4c) and

φ̃ : M̂ → S5(c) ⊂ C3 is given by

φ̃(x, y) = ei(µ−δ)xz(y) + ei(µ+δ)xw(y),

where

z(y) =
1

2δ2

(µ(µ + δ)√
c

+
√

c cos y,−(µ + δ) + µ cos y, δ sin y
)

,

w(y) =
1

2δ2

(µ(µ − δ)√
c

+
√

c cos y,−(µ − δ) + µ cos y, δ sin y
)

,

and z : I → S5
(√

2δc
δ+µ

)

⊂ C3 is a special Legendre curve with speed

1/(2δ), w : I → S5
(√

2δc
δ−µ

)

is the associated special Legendre curve of z

with speed 1/(2δ) and M̂ is the covering space of M via the Hopf fibration.

Theorem 2.3 ([3]): Let φ : M → CH
2(4c) be a Lagrangian H-umbilical iso-

metric immersion satisfying (2.1) with λ = 2µ for some non-trivial function µ,

where c < 0, then

(i) µ is a constant,

(ii) M is a real space form M2(K) of constant sectional curvature K = µ2 +c,

(iii) M is locally isometric to one of the following warped products:

I ×1/δ cos(δx) R, R ×1 R, R ×eδx R,

and up to rigid motions of CH
2(4c), φ is the composition π ◦ φ̃, where π

is the projection from H
5
1(c) onto CH

2(4c), δ =
√

|K| and
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(iii-1) when K = µ2 + c > 0, φ̃ : M → H5
1(c) ⊂ C3

1 is given by

φ̃(x, y) =
eiµx

2δ2

(

(µ(µ − δ)√
−c

−
√
−c cos y

)

eiδx +
(µ(µ + δ)√

−c
−
√
−c cos y

)

e−iδx,

(δ − µ + µ cos y)eiδx − (δ + µ − µ cos y)e−iδx,

δ sin y(eiδx + e−iδx)

)

,

δ =
√

K;

(iii-2) when K = µ2 + c = 0, φ̃ : M → H5
1(c) ⊂ C3

1 is given by

φ̃(x, y) = ei
√
−cx(1/

√
−c − ix + (

√
−c/2)y2, x + (i/2)

√
−cy2, y);

(iii-3) when K = µ2 + c < 0, φ̃ : M → H5
1(c) ⊂ C3

1 is given by

φ̃(x, y) =
eiµx

2

(

(1/
√
−c)(eδx(1 − (µ/δ)i − cy2) + e−δx(1 + (µ/δ)i)),

eδx((1/δ) + (µi − δ)y2) − (1/δ)e−δx, 2yeδx
)

,

δ =
√
−K.

Before we give proofs of Theorem 1.2 and Theorem 1.3, we first state two

examples, which appeared in Theorem 2.2 for c = 1 and Theorem 2.3 (iii-1) for

c = −1.

Example 1 (Lagrangian pseudosphere φ1 :M →CP
2(4)): φ1 is given by the com-

position π◦φ̃1, where π is the projection of Hopf fibration and φ̃1:M →S5(1)⊂C3

is given by

φ̃(x, y) = ei(µ−δ)xz(y) + ei(µ+δ)xw(y),

where

z(y) =
1

2δ2
(µ(µ + δ) + cos y,−(µ + δ) + µ cos y, δ sin y),

w(y) =
1

2δ2
(µ(µ − δ) + cos y,−(µ − δ) + µ cos y, δ sin y),

with

µ = (2/3)|H|, δ =
√

1 + µ2.

Since det(gij) = (1/δ2) cos2(δx), the set of singularities of φ is

{(x, y) ∈ I × R|2δx = (2k + 1)π, k ∈ Z}.
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As φ is 2π-periodic in y, φ defines an immersion R × S1 in CP
2. We restrict φ

to the set

{(x, y) ∈ I × S
1| − π ≤ 2δx ≤ π},

so the singular points are isolated. Moreover,

φ̃1(−π/(2δ), y) = −e−(ibπ)/δφ̃1(π/(2δ), y),

hence φ1(−π/(2δ), y) = φ1(π/(2δ), y). Using φ1 is π/δ-periodic in x, if in

[−π/(2δ), π/(2δ)] × S1 we identify {−π/(2δ)} × S1 and {π/(2δ)} × S1 to two

different points, we obtain a branched immersion from a two sphere to CP
2(4).

We call φ1 : M → CP
2(4) the Lagrangian pseudosphere in CP

2.

Example 2 (Lagrangian pseudosphere φ2 : M → CH
2(4)): φ2 is given by the

composition π ◦ φ̃2, where π is the projection of Hopf fibration from H5
1(−1)

onto CH
2(−4) and φ̃2 : M → H5

1(−1) ⊂ C3
1 is given by

φ̃(x, y) = ei(µ−δ)xz(y) + ei(µ+δ)xw(y),

where

z(y) =
1

2δ2
(µ(µ + δ) − cos y,−(µ + δ) + µ cos y, δ sin y),

w(y) =
1

2δ2
(µ(µ − δ) − cos y,−(µ − δ) + µ cos y, δ sin y),

with

µ = (2/3)|H|, δ =
√

µ2 − 1.

By similar analysis, we obtain a branched immersion from a two sphere to

CH
2(−4). We call φ2 : M → CH

2(−4) the Lagrangian pseudosphere in CH
2.

3. Holomorphic cubic form

We consider now that the target manifold N is a simply connected 2-dimensional

complex space form with complex structure J and constant holomorphic sec-

tional curvature 4c. We denote by N = M̃(4c) the complex projective plane

CP
2 if c = 1, the complex Euclidean plane C

2 if c = 0 and the complex hy-

perbolic plane CH
2 if c = −1, with their standard complex structures J and

metrics g.

Relative to the orthonormal frames

e1, e2; e1∗ = Je1, e2∗ = Je2,
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the structure equations are

dθA =
∑

B

θAB ∧ θB, θAB + θBA = 0,(3.1)

dθAB =
∑

C

θAC ∧ θBC + ΩAB,

where the indices have the range

A, B, C, D, . . . = 1, 2, 1∗, 2∗; i, j, k, l, . . . = 1, 2

and θA is an orthonormal coframe, θAB(= −θBA) are the connection forms, and

ΩAB = −1

2

∑

C,D

KABCDθC ∧ θD,

where

KABCD =c{(δACδBD − δADδBC) + g(JeC , eA)g(JeD, eB)(3.2)

− g(JeC , eB)g(JeD, eA) + 2g(JeC , eD)g(JeB, eA)}

are the curvature forms. Equation (3.2) expresses the fact that N is of constant

holomorphic curvature 4c. Denote by ∇ the connection of N with respect to g.

It follows from the fact that ∇ ◦ J = J ◦ ∇ that

(3.3) θij = θi∗j∗ , θi∗j = θj∗i.

Let φ : M → M̃(4c) be a branched Lagrangian immersion from an oriented

surface M into M̃(4c). Outside of the branch points, we restrict to the frame

e1, e2; e1∗ = Je1, e2∗ = Je2, such that e1, e2 are tangent to L. Then

θi∗ = 0,

and by (3.1),

(3.4) θji∗ = hi∗

jkθk,

where

hi∗

jk = hi∗

kj .

The first and second fundamental forms are respectively

I = θ2
1 + θ2

2 ,

II =

2
∑

i=1

(hi∗

11θ
2
1 + 2hi∗

12θ1θ2 + hi∗

22θ
2
2)ei∗ .
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Taking the second formula of (3.3), we have

(3.5) hi∗
jk = hj∗

ki = hk∗
ij .

The mean curvature vector is defined by

H =
1

2

∑

k

Hk∗

ek∗ =
1

2

∑

k

(

∑

j

hk∗

jj

)

ek∗ .

Exterior differentiation of (3.4) and use of (3.1) give
∑

Dhi∗

jk ∧ θk = 0,

where

Dhi∗

jk = dhi∗

jk +
∑

l

hi∗

lkθlj +
∑

l

hi∗

jlθlk +
∑

l

hl∗

jkθl∗i∗ .

By putting

(3.6) Dhi∗

jk =
∑

hi∗

jk,lθl,

we get

(3.7) hi∗

jk,l = hi∗

jl,k.

Thus hi∗

jk,l is symmetric in any two of its indices and

(3.8) Hi∗

j = Hj∗

i ,

where Hi∗

j is defined by

(3.9)
∑

j

Hi∗

j θj = dH i∗ +
∑

j

Hj∗θji.

Choose an isothermal parameter z = x+ iy on M , denote the induced metric

of M by g = ρ2dzdz̄, so θ1 = ρdx, θ2 = ρdy. Write

(3.10) ζ = θ1 + iθ2 = ρdz.

By (3.1) its exterior derivative is given by

(3.11) dζ = iζ ∧ θ12.

Now suppose that the mean curvature vector H is nonzero everywhere. Define

a cubic form on M by

Θ =8
(

〈h(φz , φz), Jφz〉 +
2

3|H|2 〈H, Jφz〉3
)

⊗ (dz)3

=Ĥζ3,
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where

(3.12) Ĥ = (h1∗

11 − 3h1∗

22) + i(h2∗

22 − 3h2∗

11) +
1

12|H|2 (H1∗ − iH2∗

)3

and 〈 , 〉 denotes the inner product associated with the Riemannian metrics on

M as well as on M̃(4c).

Remark 2: It is easy to see that Θ is independent of the choice of the complex

coordinates. So it is a global cubic form on M . It is a generalization of the

cubic form for Lagrangian surface in C
2 given by Castro and Urbano in [1].

Theorem 3.1: If H is a nonzero constant, Θ is a holomorphic cubic form on

M .

Proof. The hypothesis implies

(3.13) H1∗

H1∗

,k + H2∗

H2∗

,k = 0, k = 1, 2.

From (3.13), (3.5), (3.6), (3.7), (3.8) and (3.9), it follows that

dĤ =3θ12

{

3h2∗

11 − h2∗

22 +
1

4|H|2 (H1∗

)2H2∗ − 1

12|H|2 (H2∗

)3
}

(3.14)

+ 3iθ12

{

− 3h1∗

22 + h1∗

11 +
1

12|H|2 (H1∗

)3 − 1

4|H|2 H1∗

(H2∗

)2
}

− ζ
{

4h1∗

221 + ih2∗

111 − ih2∗

221 +
1

2|H|2 H1∗

H2∗

H1∗

2

+ i
1

4|H|2 [(H1∗

)2 − (H2∗

)2]H1∗

2

}

From (3.10) and the definition of Θ, we have

Θ = Ĥρ3(dz)3.

It suffices to show that the coefficient Ĥρ3 of (dz)3 in this expression is a

holomorphic function of z. By substituting (3.10) into (3.11), we get

dρ + iρθ12 ≡ 0 mod dz,

while (3.14) implies

dĤ − 3iθ12Ĥ ≡ 0 mod dz.

It follows that

d(Ĥρ3) ≡ 0 mod dz.

Therefore, for a branched Lagrangian immersion φ : M → M̃(4c) with the

nonzero constant length mean curvature vector, the cubic form Θ is holomorphic
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outside of the branch points. Moreover, from the expression of Θ, we know that

Θ has zeros at the branch points. So Θ has no poles and it is a holomorphic

3-differential on M .

Remark 3: It is well-known that if φ : M → M̃(4c) is a minimal surface in a

2-dimensional complex space form, i.e., H ≡ 0, then

Θ = 8〈h(φz, φz), Jφz〉(dz)3

is a holomorphic 3-form on M .

Proposition 3.2: Let φ : M → M̃(4c) be a branched Lagrangian immersion

from an oriented surface M into a 2-dimensional complex space form M̃(4c).

Then Θ ≡ 0 if and only if M is a Lagrangian H-umbilical surface satisfying

h(e1, e1) = λJe1, h(e2, e2) = µJe1, h(e1, e2) = µJe2,

with λ = 2µ with respect to some suitable orthonormal local frame field.

Proof. It is clear that λ = 2µ implies Θ ≡ 0. Conversely, it follows from (3.12)

that Θ ≡ 0 is equivalent to

12|H|2(h1∗

11 − 3h1∗

22) + (H1∗

)3 − 3H1∗

(H2∗

)2 = 0,

12|H|2(h2∗

22 − 3h2∗

11) + (H2∗

)3 − 3(H1∗

)2H2∗

= 0.

It can be deduced to

12|H|2h1∗

11 = 2(H1∗

)3 + 3H1∗

(H2∗

)2,

12|H|2h1∗

22 = (H1∗

)3,

12|H|2h2∗

11 = (H2∗

)3,

12|H|2h2∗

22 = 3(H1∗

)2H2∗

+ 2(H2∗

)3.

Take the local orthonormal frame e1, e2, e1∗ , e2∗ such that e1∗ = H/|H|, then

H1∗

= 2|H| and H2∗

= 0. It is easy to get that

h(e1, e1) = λe1∗ , h(e2, e2) = µe1∗ , h(e1, e2) = µe2∗ ,

where λ = (4/3)|H| = 2µ.

As a corollary, we have
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Theorem 3.3: Let φ : S2 → M̃(4c) be a branched Lagrangian immersion from

a two sphere to a 2-dimensional complex space form with constant length mean

curvature vector. Then the surface is Lagrangian H-umbilical with λ = 2µ.

Taking account of Theorem 2.1, we get the following corollary, which is the

main result in [1].

Corollary 3.4: Let φ : M → C2 be a branched Lagrangian immersion from

a two sphere with constant length mean curvature vector. Then M is a La-

grangian pseudosphere.

4. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. Let φ : M → CP
2(4) be a branched Lagrangian immer-

sion from a two sphere with constant length mean curvature vector. Then it

follows from Theorem 2.2 and Theorem 3.3 that up to isometries, M is the

Lagrangian pseudosphere φ1 : M → CP
2(4), which is given by Example 1.

Therefore we complete the proof of Theorem 1.2.

We also need the following lemma in order to prove our Theorem 1.3.

Lemma 4.1 ([8]): Let φ : Σ → N ⊂ Rk be a conformal smoothly branched

immersion from a compact Riemann surface Σ. Then

1

2π

∫

Σ

Kdv = χ(Σ) + b,

where χ(Σ) is the Euler number of Σ and b the number of branch points of Σ,

counted with multiplicities.

Proof of Theorem 1.3. Let φ : M → CH
2(−4) be a branched Lagrangian im-

mersion from a two sphere with constant length mean curvature vector. Ac-

cording to the above generalized Gauss-Bonnet formula, there is no branched

immersion from a topological two sphere to CH
2(−4) with non-positive curva-

ture. Then it follows from Theorem 2.3 and Theorem 3.3 that up to isometries,

M is the Lagrangian pseudosphere φ2 : M → CH
2(−4), which is given by

Example 2. This completes the proof of Theorem 1.3.
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